GSA: A Gravitational Search Algorithm

نویسندگان

  • Esmat Rashedi
  • Hossein Nezamabadi-pour
  • Saeid Saryazdi
چکیده

In recent years, various heuristic optimization methods have been developed. Many of these methods are inspired by swarm behaviors in nature. In this paper, a new optimization algorithm based on the law of gravity and mass interactions is introduced. In the proposed algorithm, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The proposed method has been compared with some well-known heuristic search methods. The obtained results confirm the high performance of the proposed method in solving various nonlinear functions. 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING

The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...

متن کامل

On the Convergence Analysis of Gravitational Search Algorithm

Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...

متن کامل

On the Convergence Analysis of Gravitational Search Algorithm

Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...

متن کامل

Gravitational Search Algorithm to Solve the K-of-N Lifetime Problem in Two-Tiered WSNs

Wireless Sensor Networks (WSNs) are networks of autonomous nodes used for monitoring an environment. In designing WSNs, one of the main issues is limited energy source for each sensor node. Hence, offering ways to optimize energy consumption in WSNs which eventually increases the network lifetime is strongly felt. Gravitational Search Algorithm (GSA) is a novel stochastic population-based meta-...

متن کامل

Optimality of the flexible job shop scheduling system based on Gravitational Search Algorithm

The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...

متن کامل

Optimization of Mixed-Integer Non-Linear Electricity Generation Expansion Planning Problem Based on Newly Improved Gravitational Search Algorithm

Electricity demand is forecasted to double in 2035, and it is vital to address the economicsof electrical energy generation for planning purposes. This study aims to examine the applicability ofGravitational Search Algorithm (GSA) and the newly improved GSA (IGSA) for optimization of themixed-integer non-linear electricity generation expansion planning (GEP) problem. The performanceindex of GEP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 179  شماره 

صفحات  -

تاریخ انتشار 2009